

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 6637-6640

Hookerianolides A–C: three novel casbane-type diterpenoid lactones from *Mallotus hookerianus*

Yang Bai, Yi-ping Yang* and Yang Ye*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China

> Received 30 April 2006; revised 3 July 2006; accepted 5 July 2006 Available online 28 July 2006

Abstract—Three highly oxidized casbane-type diterpenoids with unique α,β -unsaturated γ -lactones, named Hookerianolides A (1), B (2), and C (3), were isolated from the methylene chloride extracts of *Mallotus Hookerianus*. Their structures were elucidated based on NMR spectroscopic data and chemical conversions. The stereochemistry was confirmed by combination of ROESY correlations and CD analyses.

© 2006 Published by Elsevier Ltd.

Mallotus hookerianus (seem.) Muell. Arg. (Euphorbiaceae) is distributed from Southern Guangxi and Guangdong to Hainan Island.¹ To our best knowledge, only a few phytochemical studies have been published on its chemical constituents to date.² Chemical investigation, as part of our current interest in the *Mallotus* genera, has resulted in the isolation of three novel casbane-type diterpenoids, named Hookerianolides A (1), B (2), and C (3). In this letter, we describe the isolation and structural elucidation of the novel compounds based on spectroscopic analyses and chemical conversions.

A small group of casbane-type diterpenes have so far been found only in seven plants of the family Euphorbiaceae.^{3–9} Compounds 1–3 are structurally highly oxidized casbane-type diterpenoids and the first examples having a trisubstituted epoxide and a α , β -unsaturated γ -lactone. Most notably, there is a hydroxyl at γ position of the lactone in Hookerianolide A, which formed a unique hemiketal unit.

The plant material was collected from the Hainan Province in China. The air-dried ground plant powder (14 kg) of *Mallotus Hookerianus* was percolated with 95% ethanol, and the crude ethanolic extract partitioned with CH_2Cl_2 , EtOAc, and *n*-C₄H₉OH successively. The

0040-4039/\$ - see front matter @ 2006 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2006.07.004

CH₂Cl₂ extract (100 g) was subjected to repeated CC over silica gel, using petrol/Me₂CO and CHCl₃/CH₃OH as eluents (increasing polarity). Compound **1** (25 mg) was obtained in fractions eluted with CHCl₃/CH₃OH (9:1). The CHCl₃/CH₃OH (20:1) fractions were further fractionated by MCI gel column chromatography, using 30% Me₂CO-H₂O as eluents, to yield two major sub-fractions, which were further purified by a column chromatography of Sephadex LH-20 to afford **2** (4 mg) and **3** (12 mg).

Hookerianolide A $(1)^{10}$ was obtained as an optically active $([\alpha]_D^{20} - 28.1 \text{ in methanol})$ white amorphous powder. The molecular formula of 1 was established as $C_{20}H_{28}O_6$ by HR-ESIMS ($[M+Na]^+$ m/z: found 387.1779, calcd 387.1784). Compound 1 also exhibited a deprotonated molecular ion at m/z 363 $[M-H]^-$ in the negative mode of its low resolution ESIMS, confirming the assignment for the suggested molecular formula, requiring 7° of unsaturation. The ¹³C NMR spectrum showed 20 carbon signals, including one carboxylic, four olefinic (two methine and two quaternary), three oxygenated methine and two oxygenated quaternary carbons together with ten aliphatic carbons (four methyl, three methylene, two methine, and one quaternary). Two vinyl proton signals at $\delta_{\rm H}$ 7.12 (H-11), 5.55 (H-3) were shown in its ¹H NMR spectrum, which equated with four olefinic carbons attributing to two trisubstituted double bonds in its ¹³C NMR. With all the unsaturated function groups known [COOR, $(C=CH) \times 2$], the four remaining degrees of unsaturation were ascribed to four

Keywords: Hookerianolides A–C; Casbane-type diterpenoid; Lactone; *Mallotus hookerianus*.

^{*} Corresponding authors. Tel.: +86 21 5080 6600; e-mail: ypyang@ mail.shcnc.ac.cn

ring systems. The chemical shifts at $\delta_{\rm C}$ 28.7 (C-2), 32.4 (C-1), 23.3 (C-15), 16.3 (C-16), 29.7 (C-17) in the ¹³C NMR spectrum together with *gem*-dimethyl at $\delta_{\rm H}$ 1.53 and 0.76 in the ¹H NMR spectrum indicated the presence of cyclopropyl ring bearing the geminal methyl groups, which were typical signals for the casbane-type diterpenoid containing a 14 membered macrocyclic ring.

The analysis of ${}^{1}H{-}^{1}H$ COSY clearly outlined two groups of protons bearing spin coupling units as drawn with bold bonds (Fig. 2). The 1 H and 13 C NMR spectra with HMQC analysis indicated the presence of a trisubstituted epoxide¹¹ ($\delta_{\rm H}$ 2.64, d, J = 8.8 Hz; $\delta_{\rm C}$ 65.0 and 62.1 ppm). The scaffold of 1 was figured out by HMBC experiments (Table 1 and Fig. 2), which allowed for the connection of the protons bearing spin coupled units. The HMBC correlations could link most of the bonds together, except for the bond between C-10 and C-20. It was confirmed that 1 owned three free hydroxyl groups, due to the appearance of three methyl signals at $\delta_{\rm H}$ 2.09, 2.07, 2.04 in the ¹H NMR spectrum of its triacetate derivative (4).⁴ The remaining ring was assigned to a α,β -unsaturated γ -lactone which formed the quaternary hemiketal carbon $\delta_{\rm C}$ 103.7 (C-10). Thus, the planar structure of 1 was elucidated.

Attempts to grow crystals suitable for single-crystal Xray diffraction analysis failed. The relative stereochemistry of **1** was obtained from analysis of ROESY spectra. The ROESY correlations for H-6/CH₃-19 and H-9 β indicated that CH₃-19, H-6, and H-9 β were β -oriented. The H-7 correlated to H-9 β and H-5, suggesting that they were β -oriented. The CH₃-16 correlated to H-2, H-1, and H-13 β indicated that they were also β -oriented. In the ROESY spectrum of **4**, CH₃-19 correlated to 10-OCO*CH*₃, H-7 correlated to H-14 β , suggesting that they were β -oriented. Thus OH-10, CH₃-19, CH₃-16, H-14 β , H-13 β , H-9 β , H-7, H-6, H-5, H-2, and H-1 of **1** were all in β -orientations. Therefore, the structure of **1** was unambiguously elucidated as shown in Figure 1.

The absolute stereochemistry of **1** was determined on the basis of its CD spectrum. The stereochemistry at C-10 was proposed to be *R*, according to a negative Cotton effect at 218 nm (π – π^*) and a positive Cotton effect at 252 nm (n– π^*), which were identical to those of the known *epi*-Sarcotin A and reversed to those of the known Pukalide^{12,13} (Figs. 3 and 4).

HR-ESIMS analysis of Hookerianolide B $(2)^{14}$ indicated the molecular formula $C_{20}H_{28}O_5$ (seven unsaturations), differing from 1 by the loss of an oxygen atom. The

Figure 1. Structures of Hookerianolides A (1), B (2), C (3) and Hookerianolide A triacetate (4).

Table 1. ¹H NMR Data of Hookerianolides A (1), B (2), C (3), and Hookerianolide A triacetate (4)

No.	1 ^a	2 ^b	3 ^c	4^{d}
1	0.76 (t, 8.7)	0.73 (t, 8.8)	0.78 (t, 8.8)	0.78 (t, 8.6)
2	1.53 (dd, 11.7, 8.7) ^e	1.53 (dd, 11.0, 8.8)	1.55 (dd, 11.2, 8.8)	1.39 (dd, 11.3, 8.6)
3	5.55 (d, 11.7)	5.59 (d, 11.0)	5.60 (d, 11.2)	5.67 (d, 11.3)
5	4.07 (d, 8.8)	4.06 (d, 8.9)	4.07 (d, 8.9)	5.54 (d, 9.5)
6	3.57 (t, 8.8)	3.51 (t, 8.9)	3.54 (t, 8.9)	5.26 (t, 9.5)
7	2.64 (d, 8.8)	2.61 (d, 8.9)	2.63 (d, 8.9)	2.69 (d, 9.5)
9α	2.78 (d, 14.1)	2.67 (dd, 12.5, 4.7)	2.74 (d, 13.8)	3.17 (d, 14.3)
9β	1.24 (d, 14.1)	0.88 (t, 12.5)	1.24 (d, 13.8)	1.18 (d, 14.3)
10		5.05 (d, 12.5)		
11	7.12 (t, 2.0)	7.52 (d, 1.3)	7.12 (t, 2.0)	7.15 (t, 2.1)
13α	2.22–2.32 (m)	2.15–2.27 (m)	2.26–2.36 (m)	2.33–2.42 (m)
13β	2.49–2.55 (m)	2.42–2.48 (m)	2.45–2.51 (m)	2.53-2.58 (m)
14α	2.00 (dt, 14.7, 3.8)	1.97 (dt, 14.7, 3.9)	1.92 (dt, 14.6, 3.8)	2.00-2.10 (m)
14β	1.44–1.50 (m)	1.50–1.56 (m)	1.50–1.60 (m)	1.31–1.35 (m)
16	1.14 (s)	1.12 (s)	1.12 (s)	1.14 (s)
17	1.08 (s)	1.02 (s)	1.04 (s)	1.05 (s)
18	1.78 (s)	1.76 (s)	1.76 (s)	1.77 (s)
19	1.53 (s)	1.46 (s)	1.48 (s)	1.61 (s)
10-OCH2CH3			3.41 (q, 7.0)	
10-OCH ₂ CH ₃			1.15 (t, 7.0)	
10-OCOCH3				2.09 (s)
6-OCOCH ₃				2.04 (s)
5-OCOCH ₃				2.07 (s)

 $^{\rm a}$ Spectra recorded at 300 MHz for $^{\rm 1}{\rm H}$ and 100 MHz for $^{\rm 13}{\rm C}$ in CD₃OD.

^e The J-values (Hz) are shown in parentheses.

^{b,c} Spectra recorded at 300 MHz for ¹H and 100 MHz for ¹³C in DMCO-*d*₆.

^d Spectra recorded at 300 MHz for ¹H and 100 MHz for ¹³C in CDCl₃.

Figure 2. ${}^{1}H{}^{-1}H$ COSY correlations and key HMBC correlations of compound 1.

Figure 3. Key ROESY correlations of compounds 1 and 4.

Figure 4. CD spectra of compounds 1 and 3.

¹H and ¹³C NMR spectra of **2** were similar to those of **1**, except for the presence of an additional hydrogen atom at $\delta_{\rm H}$ 5.05 (H-10) and an oxygenated methine at $\delta_{\rm C}$ 78.5

Table 2. 13 C NMR Data of Hookerianolides A (1), B (2), C (3) and Hookerianolide A triacetate (4)

No.	1	2	3	4
1	32.4 (d)	30.9 (d)	30.5 (d)	30.9 (d)
2	28.7 (d)	28.8 (d)	26.9 (d)	26.8 (d)
3	130.6 (d)	128.4 (d)	128.7 (d)	133.8 (d)
4	136.4 (s)	133.9 (s)	135.5 (s)	128.7 (s)
5	83.3 (d)	81.0 (d)	81.9 (d)	79.6 (d)
6	72.5 (d)	71.2 (d)	71.0 (d)	69.4 (d)
7	65.0 (d)	64.8 (d)	63.3 (d)	60.4 (d)
8	62.1 (s)	59.8 (s)	60.0 (s)	59.9 (s)
9	49.5 (t)	44.5 (t)	48.6 (t)	47.8 (t)
10	103.7 (s)	78.5 (d)	107.7 (s)	104.2 (s)
11	148.7 (d)	148.6 (d)	145.7 (d)	143.6 (d)
12	137.0 (s)	135.5 (s)	137.8 (s)	136.9 (s)
13	28.0 (t)	27.2 (t)	26.8 (t)	26.5 (t)
14	21.6 (t)	20.4 (t)	21.8 (t)	20.0 (t)
15	23.3 (s)	21.7 (s)	21.8 (s)	22.6 (s)
16	16.3 (q)	15.5 (q)	15.5 (q)	15.5 (q)
17	29.7 (q)	28.8 (q)	28.6 (q)	28.6 (q)
18	12.4 (q)	11.8 (q)	11.4 (q)	11.7 (q)
19	20.3 (q)	17.9 (q)	19.7 (q)	19.1 (q)
20	173.9 (s)	173.5 (s)	170.7 (s)	170.0 (s)
10-OCH ₂ CH ₃			59.6 (t)	
10-OCH ₂ CH ₃			15.2 (q)	
10-OCOCH3				167.8 (s)
$10-OCOCH_3$				21.8 (q)
6-OCOCH3				169.6 (s)
$6-OCOCH_3$				21.1 (q)
5-0 <i>CO</i> CH ₃				169.9 (s)
5-OCOCH ₃				20.7 (q)

(C-10) instead of an hemiketal moiety in 1, indicating that the hydroxyl of C-10 in 1 was replaced by a hydrogen in 2. This conclusion was further confirmed by the ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY, HSQC, and HMBC correlations. The relative stereochemistry of 2 was in agreement with that of 1 due to the similar ROESY correlations and by comparison of their NMR data. The H-10 correlated to CH₃-19 in the ROESY spectrum, suggesting that H-10 was β -oriented. 2 was considered to be 10-deoxy Hookerianolide A.

Scheme 1. Biogenetic pathway proposed for Hookerianolide A.

Hookerianolide C (3)¹⁵ was isolated as a white powder. HR-ESIMS spectrum provided the molecular formula $C_{22}H_{32}O_6$. The ¹H and ¹³C NMR spectral data of 3 showed close similarity to those of 1, except for the presence of an additional oxygenated ethyl at δ_H 3.41 (q, J = 7.0 Hz) and δ_H 1.15 (t, J = 7.0 Hz). The HMBC spectrum of 3 yielded correlations between δ_H 3.41 (10-OCH₂CH₃) and both the δ_C 107.7 (C-10) and δ_C 15.2 (10-OCOCH₃), indicating that 3 was an 10-ethyl ether of 1. The relative stereochemistry of 3 was identical to that of 1 as confirmed by ROESY experiments. The absolute configuration at C-10 was also proposed to be *R*, in accordance with the CD spectrum. Compound 3 is proposed to be an artifact, which may result from etherization of Hookerianolide A with ethanol during the extraction process (Table 2).

The biogenetic origin of Hookerianolide A is proposed in Scheme 1. The oxidation of C-5, C-6 in i was subsequently followed by epoxidation of C-7, C-8 in intermediate ii, and then oxidation of C-10 and C-20 in intermediate iii gave the key intermediate iv. The intermediate iv was further lactonized to afford Hookerianolide A.

Hookerianolides A–C are a new class of casbanoidderived diterpenes and are the first examples of multiple oxidations and cyclization modes of casbanoids within the family Euphorbiaceae with the α , β -unsaturated γ -lactone functionality.

Acknowledgments

We are grateful to members of the analytical group in Shanghai Institute of Materia Medica, for the spectral measurements. We also thank Professor Qiong-xin Zhong of Hainan Normal University for the collection and identification of the plant material.

References and notes

- Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita. Flora Reipublicae Popularis Sinicae, Tomus 44; Science Press: Beijing, 1996; pp 17–19.
- 2. Hui, W. H.; Li, M. M. Phytochemistry 1976, 15, 985-986.

- (a) Robinson, D. R.; West, C. A. *Biochemistry* 1970, *9*, 70;
 (b) Robinson, D. R.; West, C. A. *Biochemistry* 1970, *9*, 80.
- (a) Choi, Y. H.; Kim, J.; Pezzuto, J. M.; Kinghorn, A. D.; Farnsworth, N. R. *Tetrahedron Lett.* **1986**, *27*, 5795; (b) Choi, Y. H.; Pezzuto, J. M.; Kinghorn, A. D.; Farnsworth, N. R. J. Nat. Prod. **1988**, *51*, 110.
- Burke, B. A.; Chan, B. A.; Pascoe, K. O.; Blount, J. F.; Manchard, P. S. J. Chem. Soc., Perkin Trans. 1 1981, 2666.
- Moura, V. L. A.; Monte, F. J. O.; Filho, R. B. J. Nat. Prod. 1990, 53, 1566–1571.
- Kashman, Y.; Bernart, M. W.; Tischler, M.; Cardellina, J. H., II; Boyd, M. R. J. Nat. Prod. 1994, 57, 426.
- 8. Chen, H.; Jia, Z. J. Indian J. Chem. 1996, 35B, 1308-1310.
- Xu, Z. H.; Sun, J.; Xu, R. S.; Qin, G. W. Phytochemistry 1998, 49, 149–151.
- 10. Hookerianolide A: white amorphous powder; mp 174– 176 °C; $[\alpha]_{D}^{20}$ –28.1 (*c* 0.31, CH₃OH); CD (*c* 1.7 × 10⁻³ M, MeOH) $\Delta \varepsilon$ + 3.63 (252.8), 0 (233.7), -5.93 (218.6), 0 (211.1), +6.43 (202.0); UV (MeOH) λ_{max} (log ε) 202 (3.55) nm; IR (KBr) v_{max} 3502, 3388, 2935, 1758, 1730, 1431, 1061, 953, 824 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; positive ESIMS *m/z* 387.2 [M+Na]⁺; negative ESIMS *m/z* 363.3 [M–H]⁻; HR-ESIMS (positive) [M+Na]⁺, *m/z* 387.1779 [C₂₀H₂₈O₆Na]⁺ (calcd 387.1784).
- 11. Greenland, G. J.; Bowden, B. F. Aust. J. Chem. 1994, 47, 2013–2021.
- Liu, Y. H.; Hong, J. K.; Lee, C. O.; Im, K. S.; Kim, N. D.; Choi, J. S.; Jung, J. H. J. Nat. Prod. 2002, 65, 1307–1314.
- Missakian, M. G.; Burreson, B. J.; Scheuer, P. J. Tetrahedron 1975, 31, 2513–2515.
- 14. Hookerianolide B: white amorphous powder; mp 88– 90 °C; $[\alpha]_0^{20}$ -21.5 (*c* 0.34, CH₃COCH₃); UV (MeOH) λ_{max} (log ε) 213 (3.55), 253 (3.02), 312 (2.63) nm; IR (KBr) ν_{max} 3423, 2956, 1759, 1635, 1597, 1439, 1371, 1254, 1219, 1105, 980, 783, 704 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; positive ESIMS *m/z* 719.5 [2M+Na]⁺; negative ESIMS *m/z* 347.2 [M-H]⁻; HR-ESIMS (positive) [2M+Na]⁺, *m/z* 719.3741 [C₄₀H₅₆O₁₀Na]⁺ (calcd 719.3771).
- 15. Hookerianolide C: white amorphous powder; mp 71– 73 °C; $[\alpha]_D^{20}$ -38.7 (*c* 0.60, CH₃COCH₃); CD (*c* 1.8 × 10⁻³ M, MeOH) $\Delta \varepsilon$ + 1.84 (255.1), 0 (235.2), -1.53 (227.5), 0 (221.5), +11.7 (205.2); UV (MeOH) λ_{max} (log ε) 202 (3.59), 273.5 (2.57) nm; IR (KBr) v_{max} 3448, 3105, 2926, 1770, 1649, 1288, 1200, 1068, 955, 775 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; positive ESIMS *m/z* 415.4 [M+Na]⁺; negative ESIMS *m/z* 391.1 [M–H]⁻; HR-ESIMS (positive) [M+Na]⁺, *m/z* 415.2106 [C₂₂H₃₂O₆Na]⁺ (calcd 415.2097).